O.V. Matsibora. WEB-GIS APPLICATION FOR MANAGING SPATIAL PALEOGEOGRAPHIC DATA

https://doi.org/10.15407/ugz2019.01.051
Ukr. geogr. z. 2019, N1:51-58
Language of publication: 
Ukrainian
Authors: 

O.V. Matsibora - Institute of Geography, National Academy of Sciences of Ukraine, Kyiv.

Abstract: 

Paleogeographic empirical information has spatiotemporal character and presented with huge arrays of data with different level of completeness and format. With the aim of complex study, creating reconstructions of natural conditions in the past, doing spatiotemporal correlations, comparison data of different scientists it is necessary to have effective approach for storage paleogeographic data in structured and machine-readable format. For solving this task it is offered to use web-GIS application (https://webgis.geohub.org.ua/paleo.html), which was created with free and open source technologies of web-development (JavaScript, HTML5, CSS3). During it’s development functionality of native JavaScript were used, extended with front-end framework Materialize and external libraries Lodash, jQuery and Leaflet. This web-GIS application uses only open paleogeographic data, which were published in scientific journals and monographs. The model of database consists of abstract entities: “site” and “horizon”, which could have unlimited quantity of attributes. Every site is characterized with unique digital identifier, natural zone, administrative region, geographic coordinates, author, scientists, year of investigation, general description and paleogeographic conclusion. Horizon is described with number, soil index, depth, age, morphology, micromorphology, geochemical content (Mn, Ni, Co, Cr, Mo, Cu, Pb), archaeological objects, etc. According to this approach all content of web-page is rendered dynamically that is useful for displaying different data from different sources with different level of completeness. This web-GIS application has modern responsive design, comfortable for use from mobile devices and platforms without loss of functionality. Offered approach enables analysis of huge amount of paleogeographic data, correlation between different spatial data, reconstruction natural conditions in the past, using knowledge achieved with different paleogeographic methods.

Key words: 
web-GIS, paleogeography, GIS
Pages: 
51-58
References: 

1. Paleoclimatology Datasets. (n.d.). Retrieved December 16, 2018, URL: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets

2. Lentner, I. (1997). The international paleoclimate database. In Climate and Environmental Database Systems (pp. 87-93). Springer US. https://doi.org/10.1007/978-1-4615-4094-6_8

3. ESRF paleontological microtomographic database. Retrieved December 16, 2018, URL: http://paleo.esrf.eu/index.php?/categories

4. Data from the European Pollen Database. Retrieved November 20, 2018,  URL: http://www.europeanpollendatabase.net/data

5. National Centers for Environmental Information, & Ncei. (n.d.). Paleo Data Search. Retrieved December 15, 2018, URL: https://www.ncdc.noaa.gov/paleo-search

6. Marcos-Sáiz, F. J., & Díez Fernández-Lomana, J. C. (2017). The Holocene archaeological research around Sierra de Atapuerca (Burgos, Spain) and its projection in a GIS geospatial database. Quaternary International, 433, 45–67. https://doi.org/10.1016/j.quaint.2015.10.002

7. Wehmiller, J. F., & Pellerito, V. (2015). An evolving database for Quaternary aminostratigraphy. GeoResJ, 6, 115–123. https://doi.org/10.1016/j.grj.2015.02.009

8. Lancaster, N., Wolfe, S., Thomas, D., Bristow, C., Bubenzer, O., Burrough, S., … Zárate, M. (2016). The INQUA Dunes Atlas chronologic database. Quaternary International, 410, 3–10. https://doi.org/10.1016/j.quaint.2015.10.044

9. Leverington, D. W., Teller, J. T., & Mann, J. D. (2002). A GIS method for reconstruction of late Quaternary landscapes from isobase data and modern topography. Computers & Geosciences, 28(5), 631–639. https://doi.org/10.1016/S0098-3004(01)00097-8

10. Oikonomidis, D., Albanakis, K., Pavlides, S., & Fytikas, M. (2016). Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology. Journal of Earth System Science, 125(1), 1–11. https://doi.org/10.1007/s12040-015-0643-0

11. Yang, Z., & Teller, J.T. (2005). Modeling the history of Lake of the Woods since 11,000 cal yr B.P. using GIS. Journal of Paleolimnology, 33(4), 483–497. https://doi.org/10.1007/s10933-005-0813-1

12. Valverde-Palacios, I., Valverde-Espinosa, I., Irigaray, C., & Chacón, J. (2013). Geotechnical map of Holocene alluvial soil deposits in the metropolitan area of Granada (Spain): a GIS approach. Bulletin of Engineering Geology and the Environment, 73(1), 177–192. https://doi.org/10.1007/s10064-013-0540-1

13. What is free software? (n.d.). Retrieved December 21, 2018, URL: https://www.gnu.org/philosophy/free-sw.html

14. GNU General Public License. (n.d.). Retrieved December 21, 2018, URL: https://www.gnu.org/licenses/gpl.html

15. Licensing considerations. (n.d.). Retrieved December 20, 2018, URL: https://creativecommons.org/share-your-work/licensing-considerations

16. Neteler, M., & Mitasova, H. (2002). Open Source Software and GIS. In The Kluwer International Series in Engineering and Computer Science (pp. 1–5). Springer US. https://doi.org/10.1007/978-1-4757-3578-9_1

17. Golhani, K., Rao, A. S., & Dagar, J. C. (2015). Utilization of Open-Source Web GIS to Strengthen Climate Change Informatics for Agriculture. In Climate Change Modelling, Planning and Policy for Agriculture (pp. 87–91). Springer India. https://doi.org/10.1007/978-81-322-2157-9_10

18. Steiniger, S., & Hunter, A. J. S. (2011). Free and Open Source GIS Software for Building a Spatial Data Infrastructure. In Lecture Notes in Geoinformation and Cartography (pp. 247–261). Springer Berlin Heidelberg.

19. Fink, G., & Flatow, I. (2014). Introducing Single Page Applications. In Pro Single Page Application Development (pp. 3–13). Apress. https://doi.org/10.1007/978-1-4302-6674-7_1

20. Matviishyna Zh.M., Matsibora O.V. (2015). The rhythm of floodplain soil creation in Late Holocene as indicator of physical geographic conditions changes. Ukrainian geographical journal, 2, 24–32. [In Ukrainian]. [Матвіїшина Ж.М., Мацібора О.В. Ритміка заплавного ґрунтоутворення в пізньому голоцені як індикатор змін фізико-географічних умов // Укр. геогр. журн. 2015. № 2. С. 24-32. DOI: https://doi.org/10.15407/ugz2015.02.024] https://doi.org/10.15407/ugz2015.02.024

21. Lisetskii, F. N., Matsibora, A. V., Pichura, V. I. (2016). Reconstruction of Paleoclimatic Conditions of the Second Half of the Holocene on the Results of the Study of Buried and Floodplain Soils in the South of the East European Plain. International Journal of Environmental Problems, 4(2), 131-148.

22. Matviishyna Zh. M., Karmazynenko S. P., Doroshkevych S. P., Matsibora O. V., Kushnir A. S., Perederii V. I. (2017). Paleogeographical preconditions and factors of the changes of human's iving environment on territory of Ukraine in Pleistocene and Holocene. Ukrainian geographical journal, 1, 19–29. [In Ukrainian]. [Матвіїшина Ж.М., Кармазиненко С.П., Дорошкевич С.П., Мацібора О.В. Кушнір А.С., Передерій В.І. Палеогеографічні передумови та чинники змін умов проживання людини на території України у плейстоцені та голоцені // Укр. геогр. журн. 2017. № 1. С.19-29. DOI: https://doi.org/10.15407/ugz2017.01.019] https://doi.org/10.15407/ugz2017.01.019