I. Grigorescu, A. Vrînceanu, M. Dumitrașcu, I. Mocanu, C. Dumitrică, B. Mitrică, G. Kuscicsa, P. Șerban. REGIONAL DIFFERENCES IN THE SPATIAL DISTRIBUTION AND ENVIRONMENTAL CONSEQUENCES OF PV FARMS IN SOUTHERN ROMANIA

https://doi.org/10.15407/ugz2019.03.060
Ukr. geogr. z. 2019, N3:60-69
Language of publication: 
English
Authors: 

Ines Grigorescu - Institute of Geography, Romanian Academy, Bucharest;
Alexandra Vrînceanu - Institute of Geography, Romanian Academy, Bucharest;
Monica Dumitrașcu - Institute of Geography, Romanian Academy, Bucharest;
Irena Mocanu - Institute of Geography, Romanian Academy, Bucharest;
Cristina Dumitrică - Institute of Geography, Romanian Academy, Bucharest;
Bianca Mitrică - Institute of Geography, Romanian Academy, Bucharest;
Gheorghe Kuscicsa - Institute of Geography, Romanian Academy, Bucharest;
Paul Șerban - Institute of Geography, Romanian Academy, Bucharest.

Abstract: 

Along with wind energy, photovoltaics (PV) are the main technology options for the shift to a decarbonised energy supply towards a low-carbon economy. Thus, the increasing share of solar energy has been one of the main instruments to be considered under the EU energy efficiency targets, Romania has also assumed. Romania has important solar energy resources to be exploited in the lowlands and low hills in southern and south-eastern parts of the country mainly in relation to the high values of the radiation and sunshine duration parameters. However, apart from the clean and sustainable energy they provide, PV farms also involve some environmental consequences (e.g. land degradation, soil erosion, biodiversity loss). The current paper is seeking to identify and analyse the main regional differences and environmental consequences of PV farms installation and use in Southern Romania based on several indicators: the share/surface of PV farms at County level; the share of PV farms of each land use/cover category; distance to forests, waters, protected areas (SCI, SPA); share of PV farms of main soil types. The resulted statistics enabled the authors to identify the existing and the potential environmental impacts of PV farms on specific natural and man-made environmental components (e.g. land use/cover, soils, water bodies, forests, settlements, roads).

Key words: 
solar energy resources, solar energy, PV farms, Romania
Pages: 
60-69
References: 

1. Arantegui R.L., Jäger-Waldau A. (2018). Photovoltaics and wind status in the European Union after the Paris Agreement. Renewable and Sustainable Energy Reviews, 81, 2460-2471.
https://doi.org/10.1016/j.rser.2017.06.052
 
2. Owusu P.A., Asumadu-Sarkodie S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990, 1-14.
https://doi.org/10.1080/23311916.2016.1167990
 
3. McDonald R.I., Fargione J., Kiesecker J., Miller W.M., Powell J. (2009) Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PloS one, 4(8), e6802. URL:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006802
https://doi.org/10.1371/journal.pone.0006802
 
4. Wu G.C. (2018). Land Use in Renewable Energy Planning, PhD diss., UC Berkeley, 187 p, https://cloudfront.escholarship.org/dist/prd/content/qt6152r5cv/qt6152r5cv.pdf
 
5. Denholm P., Margolis R.M. (2008). Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy, 36(9), 3531-3543.
https://doi.org/10.1016/j.enpol.2008.05.035
 
6. Hernandez R.R., Hoffacker M.K., Murphy-Mariscal M.L., Wu G.C., Allen M.F. (2015). Solar energy development impacts on land cover change and protected areas. Proceedings of the National Academy of Sciences, 112(44), 13579-13584.
https://doi.org/10.1073/pnas.1517656112
 
7. Guerin T. (2017). Using agricultural land for utility-scale photovoltaic solar electricity generation. Agricultural Science, 29(1), 40.
 
8. Colesca S.E., Ciocoiu C.N. (2013). An overview of the Romanian renewable energy sector. Renewable and sustainable energy reviews, 24, 149-158.
https://doi.org/10.1016/j.rser.2013.03.042
 
9. Mocanu I., Mitrică B., Persu M. (2015). Consequences of setting up photovoltaic parks-related land use/land cover changes in Giurgiu County rural area (Romania). Carpathian Journal of Earth and Environmental Sciences, 10(4), 201-209.
 
10. Mocanu I., Mitrică B., Persu M. (2019). Socio-economic impact of photovoltaic park: The Giurgiu County rural area, Romania. Acta geographica Slovenica, 59(1), 37-50.
https://doi.org/10.3986/AGS.4261
 
11. Soare E. (2008) Durata de strălucire a Soarelui. în Clima României, Române (Coord. Sandu I., Pescaru I., Poiană I., Geicu A., Cândea I., Țâștea D.), Editura Academiei Române, 105-114.
 
12. Grigorescu I., Micu D., Dumitrașcu M., Mitrică B., Mocanu I., Șerban P., Dumitrică C., Havriș L., Kucsicsa G. (2019). Renewable energy resources in Romania. Progress and perspectives towards the EU Targets, in Proceedings of the Air and Water-Components of the Environment, Cluj-Napoca, 9-18.
 
13. Vrînceanu A., Grigorescu I., Dumitrașcu M., Mocanu I., Dumitrică C., Micu D., Kucsicsa G., Mitrică B. (2019). Impacts of Photovoltaic Farms on the Environment in the Romanian Plain. Energies, 12(13), 1-18.
https://doi.org/10.3390/en12132533
 
14. Klimate of Ukraine (2003). Kyiv, 267 - 274 [In Ukrainian]. [Клімат України. Київ. 2003. С.267 - 274]
 
15. Atlas of the energy potential of renewable and alternative energy. (2005). Kyiv. 44 p. [Атлас енергетичного потенціалу відновлюваних та нетрадиційних джерел енергії. Київ, 2005. 44 с.]
 
16. Rybchenko L.S., Savchuk S.V. (2015). Potential of the climate solar radiation energy resources in Ukraine. Ukrainian geographical journal, 4, 16-23. DOI: https//doi.org/10.15407/ugz2015.04.016 [In Ukrainian]. [Рибченко Л.С., Савчук С.В. Потенціал геліоенергетичних кліматичних ресурсів сонячної радіації в україні // Укр. геогр. журн. 2015. № 4. С.16-23. DOI: https//doi.org/10.15407/ugz2015.04.016]
https://doi.org/10.15407/ugz2015.04.016
 
17. Tsoutsos T., Frantzeskaki N., Gekas V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289-296.
https://doi.org/10.1016/S0301-4215(03)00241-6
 
18. Dale V.H., Efroymson R.A., Kline K.L. (2011). The land use-climate change-energy nexus. Landscape ecology, 26(6), 755-773.
https://doi.org/10.1007/s10980-011-9606-2
 
19. Dubey S., Jadhav N.Y., Zakirova B. (2013). Socio-economic and environmental impacts of silicon based photovoltaic (PV) technologies. Energy Procedia, 33, 322-334.
https://doi.org/10.1016/j.egypro.2013.05.073
 
20. Hernandez R.R., Easter S.B., Murphy-Mariscal M.L., Maestre F.T., Tavassoli M., Allen E.B., Barrows C.W., Belnap J., Ochoa-Hueso R., Ravi S., Allen M.F. (2014). Environmental impacts of utility-scale solar energy. Renewable and sustainable energy reviews, 29, 766-779.
https://doi.org/10.1016/j.rser.2013.08.041
 
21. Bogdan O. (2005). Clima in vol. Geografia României, Câmpia Română, Dunărea, Podişul Dobrogei, Litoralul Românesc al Mării Negre şi Platforma Continentală, Vol. 47-64, Edit. Academiei Române, Bucureşti.
 
22. Bogdan O., Dragotă C., Micu D. (2016), Potențialul climatic în România. Natură şi Societate (coord. Bălteanu D., Dumitraşcu M., Geacu S., Mitrică B., Sima M.), Editura Academiei Române, 102-130.
 
23. Turney D., Fthenakis V. (2011). Environmental impacts from the installation and operation of large-scale solar power plants. Renewable and Sustainable Energy Reviews, 15(6), 3261-3270.
https://doi.org/10.1016/j.rser.2011.04.023
 
24. Aman M.M., Solangi K.H., Hossain M.S., Badarudin A., Jasmon G.B., Mokhlis H., Bakar A.H.A. Kazi S.N. (2015). A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renewable and Sustainable Energy Reviews, 41, 1190-1204.
https://doi.org/10.1016/j.rser.2014.08.086
 
25. Armstrong A., Waldron S., Whitaker J., Ostle N.J. (2014). Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate. Global change biology, 20(6), 1699-1706.
https://doi.org/10.1111/gcb.12437
 
26. Gasparatos, A., Doll, C. N., Esteban, M., Ahmed, A., & Olang, T. A. (2017). Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy Reviews, 70, 161-184.
https://doi.org/10.1016/j.rser.2016.08.030
 
27. Ho C.K. (2016), Review of avian mortality studies at concentrating solar power plants. In AIP Conference Proceedings, vol. 1734, No. 1, p. 1-28, AIP Publishing, URL: https://alternativeenergy.procon.org/sourcefiles/avian-mortality-solar-energy-ivanpah-apr-2014.PDF
https://doi.org/10.1063/1.4949164
 
28. Walston Jr L.J., Rollins, K.E., LaGory K.E., Smith K.P. Meyers S.A. (2016). A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renewable Energy, 92, 405-414.
https://doi.org/10.1016/j.renene.2016.02.041
 
29. Renewable Energy Statistics (2019) Source: Statistics Explained, Eurostat URL: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/7177.pdf