O.A. Skrynyk, V.I. Osadchyi, T. Szentimrey, Z. Bihari, V.P. Sidenko, D.O. Oshurok, D.O. Boichuk, O.Y. Skrynyk. SPATIAL INTERPOLATION OF CLIMATOLOGICAL DATA WITH RELIEF AND PHYSICOGEOGRAPHICAL PECULIARITIES OF THE TERRITORY OF UKRAINE TAKEN INTO ACCOUNT

https://doi.org/10.15407/ugz2020.02.013
Ukr. geogr. z. 2020, N2:13-19
Authors: 

O.A. Skrynyk - National University of Life and Environmental Sciences of Ukraine, Kyiv;
V.I. Osadchyi - Ukrainian Hydrometeorological Institute, Kyiv;
T. Szentimrey - OMSZ Hungarian Meteorological Service, Budapest, Hungary;
Z. Bihari - OMSZ Hungarian Meteorological Service, Budapest, Hungary;
V.P. Sidenko - Ukrainian Hydrometeorological Institute, Kyiv;
D.O. Oshurok - Ukrainian Hydrometeorological Institute, Kyiv;
D.O. Boichuk - Ukrainian Hydrometeorological Institute, Kyiv;
O.Y. Skrynyk - Ukrainian Hydrometeorological Institute, Kyiv.

Abstract: 

The paper presents the results of geospatial interpolation of climatological data (monthly averages of daily minimum, Tn, maximum, Tx and mean, Tm, air temperature in Ukraine) into a regular grid with the spatial resolution of 0.1o. The interpolation has been conducted by means of the meteorological software MISH (Meteorological Interpolation based on Surface Homogenized data basis) developed at the Hungarian Meteorological Service. Homogeneous data series of 178 Ukrainian meteorological stations covering the period of 1946-2015, previously obtained at the Ukrainian Hydrometeorological Institute, have been used as the base for the interpolation. The MISH algorithm adopts the ideas of geostatistical spatial modeling (like e.g. krigging), but takes advantages of valuable climatological/statistical information contained in long homogenized data series. Terrain elevation, local topography components (AURELHY, 15 first values) and a distance to the Black Sea and the Sea of Azov seashore have been used as additional predictors. The interpolation accuracy has been estimated based on the cross-validation procedure. The main result of our work is the database of grid time series: values of Tn, Tx and Tm at the regular grid points for each month of the period of 1946-2015. The result can be used both for regional climate studies and for adjacent areas where climatological information is necessary and essential.

Key words: 
climatological fields, air temperature, spatial interpolation, relief, MISH, Ukraine
Pages: 
13-19
References: 

1. Szentimrey T., Lakatos M., Bihari Z., Kovacs T., Nemeth A., Szalai S., Hiebl J., Auer I., Milkovic J., Zahradnicek P., Štěpánek P., Tolasz R., Kilar P., Pyrc R., Limanowka D., Cheval S., Matei M., Kajaba P., Ivanakova G., Bochnicek O, Nejedlik P., Statsny P., Mihic D., Petrovic P., Savic T., Skrynyk O., Nabyvanets Y., Gnatiuk N. (2012). Final report on the creation of national gridded datasets, per country. CARPATCLIM Project Deliverable D2.9. Available at: http://www.carpatclim-eu.org/docs/deliverables/D2_9.pdf
 
2. Hiebl J., Auer I., Böhm R., Schöner W., Maugeri M., Lentini G., Spinoni J., Brunetti M., Nanni T., Perčec Tadić M., Bihari Z., Dolinar M., Müller-Westermeier G. (2009). A high-resolution 1961-1990 monthly temperature climatology for the greater Alpine region. Meteorologische Zeitschrift (Meteorol. M.), 18(5), 507-530. https://doi.org/10.1127/0941-2948/2009/0403
https://doi.org/10.1127/0941-2948/2009/0403
 
3. Cornes R.C., Schrier G., Besselaar E.J.M., Jones P.D. (2018). An ensemble version of the E- OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres, 123, 9391-9409. https://doi.org/10.1029/2017JD028200
https://doi.org/10.1029/2017JD028200
 
4. Spinoni J., Szalai S., Szentimrey T., Lakatos M., Bihari Z., Nagy A., Nemeth A., Kovacs T., Mihic D., Dacic M., Petrovic P., Kržic A., Hiebl J., Auer I., Milkovic J., Štepanek P., Zahradnicek P., Kilar P., Limanowka D., Pyrc R., Cheval S., Birsan M.-V., Dumitrescu A., Deak G., Matei M., Antolovic I., Nejedlik P., Štastny P., Kajaba P., Bochnicek O., Galo D., Mikulova K., Nabyvanets Y., Skrynyk O., Krakovska S., Gnatiuk N., Tolasz R., Antofie T., Vogt J. (2015). Climate of the Carpathian region in the period 1961-2010: climatologies and trends of 10 variables. Int. J. Climatol. 35(7), 1322-1341. https://doi.org/10.1002/joc.4059
https://doi.org/10.1002/joc.4059
 
5. Krakovska S.V., Palamarchuk L.V., Shedemenko I.P., Diukel G.O., Gnatiuk N.V. (2008). Verification of data of the World climate research center (CRU) and the regional climate model (REMO) regarding surface air temperature forecasting for the period of 1961-1990. Proceeding of UHMI. Iss. 257, 42-60. [In Ukrainian]. [Верифікація даних Світового кліматичного центру (CRU) та регіональної моделі клімату (REMO) щодо прогнозу приземної температури повітря за контрольний період 1961-1990 рр. / С.В. Краковська, Л.В. Паламарчук, І.П.Шедеменко, Г.О. Дюкель, Н.В. Гнатюк // Наукові праці УкрНДГМІ, 2008. Вип. 257. С. 42-60.]
 
6. Osadchyi V.I. (2017). Resources and quality of surface water in Ukraine under conditions of anthropogenic load and climate change. Visnyk NAS Ukr., 8, 29-46. https://doi.org/10.15407/visn2017.08.029 [In Ukrainian]. [Осадчий В.І. Ресурси та якість поверхневих вод України в умовах антропогенного навантаження та кліматичних змін // Вісн. НАН України. 2017. No 8. С. 29-46]
https://doi.org/10.15407/visn2017.08.029
 
7. Kryvobok O.A., Kryvoshein O.O., Adamenko T.I. (2018). Peculiarities of technological adaptation of the CGMS system for agricultural crops monitoring in Ukraine. Ukrainian Hydrometeorological Journal, 22, 64-79. https://doi. org/10.31481/uhmj.22.2018.07. [In Russian]. [Кривобок А.А., Кривошеин А.О., Адаменко Т.И. Особенности технологической адаптации системы CGMS для мониторинга сельскохозяйственных посевов в Украине // Укр. гідрометеорол. журн. 2018. No 22. С.64-79.]
https://doi.org/10.31481/uhmj.22.2018.07
 
8. Shvidenko A., Buksha I., Krakovska S., Lakyda P. (2017) Vulnerability of Ukrainian forests to climate change. Sustainability, 9 (7), 1152. https://doi.org/10.3390/su9071152
https://doi.org/10.3390/su9071152
 
9. WMO. (2019). Global Framework for Climate Services (GFCS). http://www.wmo.int/gfcs/ Accessed September 2019
 
10. Dobesch H., Dumolard P., Dyras I. (Eds.). (2007). Spatial Interpolation for Climate Data: The Use of GIS in Climatology and Meteorology. Geographic Information Systems Series, ISTE Ltd., London, 320. ISBN:9781905209705
https://doi.org/10.1002/9780470612262
 
11. National atlas of Ukraine. (2007). Kyiv, 440 p. [In Ukrainian]. [Національний атлас України. Київ, 2007. 440 с.]
 
12. Osadchyi V.I., Babichenko V.M., Nabyvanets Y.B., Skrynyk O.Y. (2013). Dynamics of Air Temperature in Ukraine over Instrumental Observation Period. Kyiv, 308 p. [In Ukrainian]. [Динаміка температури повітря в Україні за період інструментальних метеорологічних спостережень / В.І. Осадчий, В.М. Бабіченко, Ю.Б. Набиванець, О.Я. Скриник. Київ, 2013. 308 с.]
 
13. Szentimrey T., Bihari Z. (2007). Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis). Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology. Budapest, Hungary, 2004, COST Action 719, COST Office, 17-27.
 
14. Mamara A, Anadranistakis M, Argiriou AA, Szentimrey T, Kovacs T, Bezesc A, Bihari Z. (2017). High resolution air temperature climatology for Greece for the period 1971-2000. Meteorol. Appl., 24 (2), 191-205. https://doi.org/10.1002/ met.1617
https://doi.org/10.1002/met.1617
 
15. Gofa F., Mamara A., Anadranistakis M., Flocas H. (2019). Developing gridded climate data sets of precipitation for Greece based on homogenized time series. Climate, 7 (5), 68. https://doi.org/10.3390/cli7050068
https://doi.org/10.3390/cli7050068
 
16. Osadchyi V., Skrynyk O.A., Radchenko R., Skrynyk O.Y. (2018). Homogenization of Ukrainian air temperature data. Int. J. Climatol., 38(1), 497-505. https://doi.org/10.1002/joc.5191
https://doi.org/10.1002/joc.5191
 
17. Osadchyi V.I., Skrynyk O.A., Sidenko V.P., Boichuk D.O., Oshurok D.O., Skrynyk O.Y. (2018). Homogenized database of long monthly mean air temperature time series. Geoinformatika, 1 (65), 45-68. [In Ukrainian]. [Гомогенізована база даних довгих рядів середньої місячної температури повітря / В.І. Осадчий, О.А. Скриник, В.П. Сіденко, Д.О. Бойчук, Д.О. Ошурок, О.Я. Скриник // Геоінформатика. 2018. 1 (65). С. 54-68]
 
18. Skrynyk O.Y., Aguilar E., Skrynyk O.A., Sidenko V., Boichuk D., Osadchyi V. (2019). Quality control and homogenization of monthly extreme air temperature of Ukraine. Int. J. Climatol., 39(4), 2071-2079. https://doi.org/10.1002/joc.5934
https://doi.org/10.1002/joc.5934
 
19. Benichou P., Le Breton O. (1987). AURELHY: une methode d'analyse utilisant le relief pour les besoins de l'hydrometeorologie. In Deuxiиmes Journйes Hydrologiques de l'ORSTOM а Montpellier (Colloques et Seminaires). ORSTOM: Paris; 299-304. ISBN: 2-7099-0865-4.
 
20. Daly C, Neilson RP, Philips DL. (1994). A statistical-topographical model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol., 31, 661-676. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
 
21. Szentimrey T., Bihari Z. (2014). Manual of interpolation software MISHv1.03, Hungarian Meteorological Service, Budapest, Hungary, 59 p.
 
22. Thomas A., Herzfeld U.C. (2004). REGEOTOP: new climatic data fields for East Asia based on localized relief information and geostatistical methods. Int. J. Climatol., 24 (10), 1283-1306. https://doi.org/10.1002/joc.1058
https://doi.org/10.1002/joc.1058
 
23. USGS (2010). Global 30 Arc-Second Elevation (GTOPO30) https://doi.org/10.5066/F7DF6PQS [Accessed September 2019]