Igor Chervanyov, Vladyslav Popov. THE EXPERIENCE OF GIS APPLICATION FOR AUTOMATIC ANALYSIS OF RELIEF MORPHOLOGY USING RADAR REMOTE SENSING DATA
Research purpose: to prove the possibility of constructing a structural digital elevation model which would adequately reflect its invariant - the fluvial surface runoff network, achieving this in the automatic processing and data structuring mody using GIS technologies. The using of active radar imaging methods is the newest direction in geomorphometry development, which correlates with the traditional morphometric elevation analysis. It is promising for remote mapping of the Earth’s surface. The authors defined the concept of structural surface invariant as the basis of this direction, because it retains the main features during changing the coordinate system, orientation of the imaging equipment, etc., which are important in remote sensing. The most complete reflection of the invariant is the structural digital elevation model (SDEM). The research includes following stages: a) choosing the scheme of the invariant structure ordering; b) creation of a three-dimensional structural elevation model (SDEM); creation of a DEM based on radar sensing of the Earth’s surface (RDEM); initial processing of primary raw data; determining the method of reproducing the appearance of the relief (optical image of the relief) by RDEM in topological and metric terms. Main results: proved the possibility, feasibility and effectiveness of using primary materials of active sensing of the Earth’s surface in radio bands for effective direct construction of SDEM; applied a direct RDEM processing algorithm in addition to using the results of passive terrain sensing in the optical ranges to process the data of Earth’s surface sensing in radio bands.
1. Simonov Yu. G. (1998). Relief morphometric analysis. Smolensk, 272 p. [In Russian]. [Симонов Ю. Г. Морфометрический анализ рельефа. Смоленск, 1998. 272 с.]
2. Palienko V.P., Barshchevskyi M.Ye., Spytsia R.O., Bagmet O.B., Romanenko H.V., Chebotariova L.Yu. (2013). Morphostructural-neotectonic analysis of Ukraine's territory (conceptual foundations, methods and implementation). Kyiv, 263 p. [In Ukrainian]. [Морфоструктурно-неотектонічний аналіз території України (концептуальні засади, методи та реалізація) / В.П.Па-лієнко, М. Є. Барщевський, Р. О. Спиця, О. Б. Багмет, Г. В. Романенко, Л. Ю. Чеботарьова. Київ, 2013. 263 с.]
3. Bortnyk S. Yu., Kovtoniuk O. V., Pogorilchuk N. M. (2009). Morphostructural Mapping: Evolution of Views and the Problem State. Physical Geography and Geomorphology. Iss. 56, 18-29. [In Ukrainian]. [Бортник С.Ю., Ковтонюк О.В., Погорільчук Н.М. Морфоструктурне картографування: еволюція поглядів та стан проблеми // Фіз. географія та геоморфологія. 2009. Вип. 56. С. 18-29.]
4. Kostrikov S. V., Chervanyov I. G. (2009). Relief morphology as a control element of the hydrologic-geomorphological process at the watershed. Physical Geography and Geomorphology. Iss. 56, 67-73. [In Ukrainian]. [Костріков С.В. Черваньов І.Г. Морфологія рельєфу як керуюча ланка гідролого-геоморфологічного процесу на водозборі // Фіз. географія та геоморфологія. 2009. Вип. 56. С. 67-73.]
5. Kostrikov S. V., Chervanyov I. G. (2010). Research of the fluvial landform self-organization phenomenon on the basic of the modern natural science cynergetic paradigm. Kharkiv, 144 p. [In Ukrainian]. [Костріков С. В., Черваньов І.Г. Дослідження самоорганізації флювіального рельефу на засадах синергетичної парадигми сучасного природознавства. Харків. 2010. 144 с.]
6. Krivtsov V., Kostrikov S., Staines H. J., Vorobiov B., Brendler A. (2005). Some Aspects of the Computer Technologies Application to Ecological Modelling: Case Studies of Microsoft Excel, and 'Relief-Processor'- A Modelling System for Geoecological Research. In New trends in Ecology Research. New York, 103-118.
7. Lopatin D. V., Likunov E. Yu. (2019). Structural and exploratory geomorphology: a textbook for universities. Moscow, 267 p. [In Russian]. [Лопатин Д. В., Ликунов Е. Ю. Структурная и поисковая геоморфология: учебное пособие для вузов. Москва, 2019. 267 с.]
8. Bairak G. R., Kravchuk Ya. S. (2016). Construction of morphometric maps using GIS tools for studying the history of the development of the Gologoro-Kremenets ridge. Geomorphologists: Modern Methods and Technologies for Digital Terrain Modeling in Earth Sciences. Iss.6. Moskow, 40-44. [In Russian]. [Байрак Г. Р., Кравчук Я. С. Построение морфометрических карт средствами ГИС для изучения истории развития Гологоро-Кременецкой гряды // Геоморфологи: Современные методы и технологии цифрового моделирования рельефа в науках о Земле. Вып. 6. Москва, 2016. С. 40-44.]
9. Samsonov T.Ye. (2016). Cartographic methods for visualization and generalization of digital elevation models.Geomorphologists: Modern Methods and Technologies for Digital Terrain Modeling in Earth Sciences. Iss. 6. Moskow, 9 - 18. [In Russian]. [Самсонов Т. Е. Картографические методы визуализации и генерализации цифровых моделей рельефа // Геоморфологи: Современные методы и технологии цифрового моделирования рельефа в науках о Земле. Вып. 6. Москва, 2016. С. 9-18.]
10. Koshel S. M., Entin A. L. (2016). Modern methods for calculating the distribution of surface runoff by digital elevation models. Geomorphologists: Modern Methods and Technologies for Digital Terrain Modeling in Earth Sciences. Iss. 6. Moskow, 24 - 34. [In Russian]. [Кошель С. М., Энтин А. Л. Современные методы расчета распределения поверхностного стока по цифровым моделям рельефа // Геоморфологи: Современные методы и технологии цифрового моделирования рельефа в науках о Земле. Вып. 6. Москва, 2016. С. 24 - 34.]
11. Tarboton D.G., Bras R.L. Rodriguez-Iturbe I. (1991). On the extraction of channel networks from digital elevation data. Hydrol. Process., 5, 81-100. DOI: https://doi.org/10.1002/hyp.3360050107
https://doi.org/10.1002/hyp.3360050107
12. Reuter H. I., Nelson A., Jarvis A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. DOI: https://doi.org/10.1080/13658810601169899
https://doi.org/10.1080/13658810601169899
13. Gallant J. C., Read A. M., Dowling T. I. (2012). Removal of tree offsets from srtm and other digital surface models. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B4, 275-280. DOI: https://doi.org/10.5194/isprsarchives-XXXIX-B4-275-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B4-275-2012
14. Carlton D., Tennant K., (2001). DEM quality assessment. In: MaunelD.F. (ed.). Digital Elevation Model. Technologies and Applications: The DEM User's Manual. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, 395-440.
15. Bamler R. (1997). Digital Terrain Models from Radar Interferometry. In Photogrammetric Week '97. D. Fritsch, D.Hobbie (eds.), Wichmann, Karlsruhe, 93-105.
16. Hofer M., Sapiro G., Wallner J. (2006). Fair polyline networks for constrained smoothing of digital terrain elevation data. IEEE Transactions on Geoscience and Remote Sensing, 44 (10), 2983-2990. DOI: https://doi.org/10.1109/TGRS.2006.875451
https://doi.org/10.1109/TGRS.2006.875451
17. Raaflaub L. D., Collins M. J. (2006). The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modelling & Software, 21(5), 710-732. DOI: https://doi.org/10.1016/j.envsoft.2005.02.003
https://doi.org/10.1016/j.envsoft.2005.02.003