N.M. Osadcha, V.I. Osadchyi, V.V. Osypov, S.V. Biletska, L.A. Kovalchuk, V.A. Artemenko. METHODOLOGY FOR THE NITRATE VULNERABLE ZONES DESIGNATION IN SURFACE AND GROUND WATER

DOI: 
https://doi.org/10.15407/ugz2020.04.038
Ukr. geogr. z. 2020, N4:38-48
Language of publication: 
Ukrainian
Authors: 

N.M. Osadcha - Ukrainian Hydrometeorological Institute State Service of Ukraine on Emergencies and National Academy of Sciences of Ukraine, Kyiv;
V.I. Osadchyi - Ukrainian Hydrometeorological Institute State Service of Ukraine on Emergencies and National Academy of Sciences of Ukraine, Kyiv;
V.V. Osypov - Ukrainian Hydrometeorological Institute State Service of Ukraine on Emergencies and National Academy of Sciences of Ukraine, Kyiv;
S.V. Biletska - Ukrainian Hydrometeorological Institute State Service of Ukraine on Emergencies and National Academy of Sciences of Ukraine, Kyiv;
L.A. Kovalchuk - Ukrainian Hydrometeorological Institute State Service of Ukraine on Emergencies and National Academy of Sciences of Ukraine, Kyiv;
V.A. Artemenko - Ukrainian Hydrometeorological Institute State Service of Ukraine on Emergencies and National Academy of Sciences of Ukraine, Kyiv.

Abstract: 

The article presents the national methodology for the identification of vulnerable areas to pollution of surface and ground water by nutrients compounds. The designation of nitrate vulnerable zones is an effective tool to reduce the impact of agricultural activities on water pollution by nutrients and is used for managing of diffuse pollution within river basins to achieve “good” ecological status. The analysis of heterogeneity of natural conditions in Ukraine and intensity of agricultural activity allows to determine 3 types of zones which differ in vulnerability: 1. Zones of high risk of water pollution, where nitrogen surplus in soil and washing and periodic washing regime are favorable for the nitrate leaching; 2. Zones of potential water pollution, where a deficient nitrogen balance in soil is observed in conditions of washing and periodic washing regime; 3. Zones of short-term pollution, where positive nitrogen balance in soil is noted by the unwashed water regime. The content of dissolved forms of mineral nitrogen (Nminer) in water and the presence of eutrophication process in the water body were recommended to use as criterias for designation of vulnerable zones. For the small rivers with a Strahler coefficient < 5, the nitrate vulnerable zones designation is recommended using the criterion of the nitrogen mineral forms content with a threshold value of 11,3 mgN/l. For the rivers with a Strahler coefficient ≥ 5, reservoirs, estuaries and coastal waters the designation is carried out on the basis of eutrophication. For the groundwater, it is based on the content of nitrogen mineral forms less than 9,7 mgN/l. This method was developed in Ukraine for the first time.

Key words: 
nitrate compounds, nitrate vulnerable zones, eutrophication, surface water body, ground water body
Pages: 
38-48
References: 

1. Grizzetti B., Bouraoui F., Aloe A. (2012). Changes of nitrogen and phosphorus loads to European seas. Global Change Biol., 18, 769 - 782. DOI.org/10.1111/j.1365-2486.2011.02576.x
https://doi.org/10.1111/j.1365-2486.2011.02576.x
 
2. Van Drecht G., Bouwman A.F., Harrison J., Knoop J.M. (2009). Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochem.Cycles, 23, 4, GB0A03. doi.org/10.1029/2009gb003458
https://doi.org/10.1029/2009GB003458
 
3. Khrisanov N.I., Osipov G.K. (1993). Management of eutrophication of water bodies. St. Petersburg, 279 p. [In Russian]. [Хрисанов Н.И., Осипов Г.К. Управление эвтрофированием водоемов. СПб, 1993. 279 с.]
 
4. Khilchevsky V.K. (1996). The role of agrochemicals in the formation of water quality of the Dnieper basin. Kyiv, 222 p. [In Ukrainian]. [Хільчевський В. К. Роль агрохімічних засобів у формуванні якості вод басейну Дніпра. Київ, 1996. 222 с.]
 
5. IARC (2006). Monographs on the Identification of Carcinogenic Hazards to Humans / Ingested nitrates and nitrites. http://monographs.iarc.fr/ENG/Meetings/94-nitratenitrite.pdf
 
6. Nitrates, nitrites, and N-nitroso compounds (1981). The World Health Organization. 118 p. URL: https://apps.who.int/iris/handle/10665/38763
 
7. Perelman A.I., Kasimov N.S. (1999). Landscape geochemistry. Moscow, 610 p. [In Russian]. [Перельман А.И., Касимов Н.С. Геохимия ландшафта. М., 1999. 610 с.]
 
8. Nosko B.S. (2013). Nitrogenic soil regime and its transformation in agroecosystems. Kharkiv, 130 p. [In Ukrainian]. [Носко Б.С. Нітрогенний режим грунтів і його трансформації в агроекосистемах. Харків, 2013. 130 с.]
 
9. Geographical encyclopedia of Ukraine: In 3 volumes. Vol.1. (1989). Editorial Board: O.M. Marynych (responsible editor) and others. Kyiv, 265, 266. [In Ukrainian]. [Географічна енциклопедія України : в 3-х томах, Т. 1 / редкол.: О. М. Маринич (відпов. ред.) та ін. Київ, 1989. C. 265, 266.]
 
10. Voronkov P.P. (1963). Hydrochemical bases of local runoff isolation and methods of dismemberment of its hydrograph. Meteorology and hydrology, 8, 21 - 28. [In Russian]. [Воронков П.П. Гидрохимические основания выделения местного стока и способы расчленения его гидрографа. Метеорология и гидрология. 1963, №8. C. 21 - 28.]
 
11. Osypov V.V., Bigun O.M. (2020). Estimation of pedotransfer functions for determination of soil filtration coefficient of Ukraine. Bulletin of Kharkiv V.N Karazin University. Series Geology. Geography. Ecology, 52, 68- 78. DOI: https://doi.org/10.26565/2410-7360-2020-52-05 [In Ukrainian]. [Осипов В.В., Бігун О. М. Оцінка педотрансферних функцій для визначення коефіцієнта фільтрації ґрунтів України. Вісник Харківського університету імені В.Н. Каразіна, Серія Геологія. Географія. Екологія. 2020. 52. C. 68 - 78. DOI: https://doi.org/10.26565/2410-7360-2020-52-05]
https://doi.org/10.26565/2410-7360-2020-52-05
 
12. Budal A., DeWalle D.R. (2009). Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA. Hydrological Processes. Vol. 23, 3292-3305. Doi.org/10.1002/hyp.7423
https://doi.org/10.1002/hyp.7423
 
13. Edwards P. J., Williard K. W.J. and Schoonover J. E. (2015). Fundamentals of Watershed Hydrology. Journal of Contemporary Water Research & Education. Iss. 154, 3 - 20.
https://doi.org/10.1111/j.1936-704X.2015.03185.x
 
14. Zaydelman F.R. (1987). Land reclamation. Moscow, 305 p. [In Russian]. [Зайдельман Ф. Р. Мелиорация почв. Москва, 1987. 305 с.]
 
15. Klaus J., & Jackson C. R. (2018). Interflow Is Not Binary: A Continuous Shallow Perched Layer Does Not Imply Continuous Connectivity. Water Resources Research, 54 (9), 5921-5932. DOI: https://doi.org/10.1029/2018WR022920
https://doi.org/10.1029/2018WR022920
 
16. Tang J., Zhang B., Gao C., Zepp H. (2011). Subsurface lateral flow from hillslope and its contribution to nitrate loading in the streams during typical storm events in an agricultural catchment. Hydrol. Earth Syst. Sci. Discuss, 8, 4151-4193/ DOI: doi.org/10.5194/hessd-8-4151-2011
https://doi.org/10.5194/hessd-8-4151-2011
 
17. Osadchy V., Nabyvanets B., Linnik P., Osadcha N., Nabyvanets Ju. (2016). Processes Determining Surface Water Chemistry. Springer, 240 p.
https://doi.org/10.1007/978-3-319-42159-9
 
18. Sirenko L.A., Gavrilenko M.Ya. (1978). Blooming of water and eutrophication. Kyiv, 232 p. [In Russian]. [Сиренко Л.А., Гавриленко М.Я. "Цветение" воды и эвтрофирование. Київ, 1978. 232 с.]
 
19. Dodds W.K.(2006). Eutrophication and trophic state in rivers and streams. Limnol. Oceanogr., 51(1, part 2), 671 - 680.
https://doi.org/10.4319/lo.2006.51.1_part_2.0671
 
20. Koplan-Dix I.S., Nazarov G.V., Kuznetsov V.K. (1985). The role of mineral fertilizers in the eutrophication of land waters. Leningrad, 184 p. [In Russian]. [Коплан-Дикс И.С., Назаров Г.В., Кузнецов В.К. Роль минеральных удобрений в эвтрофировании вод суши. Ленинград, 1985. 184 с.]
 
21. Correl D. L. (1999). Phosphorus: a rate limiting nutrient in surface waters. Poultry Sci., 78, 674 - 682.
https://doi.org/10.1093/ps/78.5.674
 
22. Hecky R.E., Kilham P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 796 - 822.
https://doi.org/10.4319/lo.1988.33.4part2.0796
 
23. Howarth R.W. (1988). Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics, 19. 898-910.
https://doi.org/10.1146/annurev.es.19.110188.000513
 
24. Smith V.H. (1998). Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace M.L, Groman P.M. (Eds.) Successes, Limitations and Frontiers in Ecosystem Science. Springer, New York, 7 - 49.
https://doi.org/10.1007/978-1-4612-1724-4_2
 
25. Vollenweider R. A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell' Istituto Italiana di Idrotiologia. Iss. 33, 53 - 83.
 
26. Khatchinson D. (1969). Limnology. Moscow, 592 p. [In Russian]. [Хатчинсон Д. Лимнология. Москва, 1969. 592 с.]
 
27. Billen G., Garnier J. (2007). River basin nutrient delivery to the coastal sea: assessingits potential to sustain new production of non-siliceous algae. Mar. Chem., 106. 148 - 160. DOI: doi.org/10.1016/j.marchem.2006.12.017
https://doi.org/10.1016/j.marchem.2006.12.017
 
28. Camargo J. A. and Alonso A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32, 831 - 849.
https://doi.org/10.1016/j.envint.2006.05.002
 
29. Method of assigning a surface water massif to one of the classes of ecological and chemical states of a surface water massif, as well as assigning an artificial or significantly modified surface water massif to one of the classes of ecological potential of an artificial or significantly modified surface water massif. (2019). Order of the Ministry of Ecology and Natural Resources of Ukraine #5 dated January 14, 2019. [In Ukrainian]. [Методика віднесення масиву поверхневих вод до одного з класів екологічного та хімічного станів масиву поверхневих вод, а також віднесення штучного або істотно зміненого масиву поверхневих вод до одного з класів екологічного потенціалу штучного або істотно зміненого масиву поверхневих вод. Наказ Міністерства екології та природних ресурсів України № 5 від14 січня 2019 р.]
 
30. Aubert A. H., Gascuel-Odoux C., Gruau G., et al. (2013). Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study. Hydrol. Earth Syst. Sci., 17, 1379-1391. DOI: doi.org/10.5194/hess-17-1379-2013
https://doi.org/10.5194/hess-17-1379-2013
 
31. Neal C., Reynolds B., Norris D. et al. (2011).Three decades of water quality measurements from the Upper Severn experimental catchments at Plynlimon, Wales: an openly accessible data resource for research, modelling, environmental management and education. Hydrological Processes, 25 (24). 3818-3830. DOI: https://doi.org/10.1002/hyp.8191
https://doi.org/10.1002/hyp.8191
 
32. Law of Ukraine On Amendments to Certain Legislative Acts of Ukraine Concerning the Implementation of Integrated Approaches to Water Resources Management on the Basin Principle . Vidomosti Verkhovnoi Rady (VVR), 2016, 46, article 780. [In Ukrainian]. [Закон України "Про внесення змін до деяких законодавчих актів України щодо впровадження інтегрованих підходів в управлінні водними ресурсами за басейновим принципом". Відомості Верховної Ради (ВВР), 2016, № 46, стаття 780ю]
 
33. Osadchyi V.I., Nabyvanets B.I., Osadcha N.M., Nabyvanets Yu.B. (2008). Hydrochemical reference book. surface waters of Ukraine. Hydrochemical calculations. Methods of analysis. Kyiv, 265 p. [In Ukrainian]. [Осадчий В.І., Набиванець Б.Й., Осадча Н.М., Набиванець Ю.Б. Гідрохімічний довідник. поверхневі води України. Гідрохімічні розрахунки. Методи аналізу. Київ, 2008. 265 с.]
 
34. Bolshev L.N., Smirnov N.V. (1965). Mathematical statistics tables. Moscow, 464 p. [In Russian]. [Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. Москва, 1965. 464 с.]
 
35. Yanko Ya. (1961). Mathematical and statistical tables. Moscow, 380 p. [In Russian]. [Янко Я. Математико-статистические таблицы. Москва, 1961. 380 с.]
 
36. Hirsch R., Alexander R., Smith R.(1991). Selection of methods for the detection and estimation of trends in water quality. Water resource research, Vol. 27, 5, 803 - 813.
https://doi.org/10.1029/91WR00259
 
37. The Guide to Hydrological Practices, 168, 6th Edition of WMO. URL: http://www.whycos.org/hwrp/guide/russian/168_Vol_II_ru.pdf
 
38. Methodological bases for assessing anthropogenic impact on the quality of surface waters. (1981). Ed. A.V. Karaushev. Leningrad, 175 p. [In Russian]. [Методические основы оценки антропогенного влияния на качество поверхностных вод / Под ред. А.В. Караушева. Ленинград, 1981. 175 с.]
 
39. Eutrophication of Waters. Monitoring, Assessment and Control (1982). Paris, 154 p. DOI: doi.org/10.1002/iroh.19840690206